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Abstract

This chapter discusses the use of diffraction simulators to improve experimental
outcomes in macromolecular crystallography, in particular for future experiments
aimed at diffuse scattering. Consequential decisions for upcoming data collection
include the selection of either a synchrotron or free electron laser X-ray source,
rotation geometry or serial crystallography, and fiber-coupled area detector tech-
nology vs. pixel-array detectors. The hope is that simulators will provide insights to
make these choices with greater confidence. Simulation software, especially those
packages focused on physics-based calculation of the diffraction, can help to predict
the location, size, shape, and profile of Bragg spots and diffuse patterns in terms of an
underlying physical model, including assumptions about the crystal’s mosaic struc-
ture, and therefore can point to potential issues with data analysis in the early
planning stages. Also, once the data are collected, simulation may offer a pathway to
improve the measurement of diffraction, especially with weak data, and might help to
treat problematic cases such as overlapping patterns.

1. Introduction

Most macromolecular crystallographers are familiar with one or
more software packages for data reduction, such as xds (Kabsch, 2010b) or
dials (Winter et al., 2018), which take the raw X-ray diffraction patterns,
and convert the Bragg spot intensities to real-valued amplitudes of
structure factors, which are the Fourier coefficients for calculating the
electron density map. Diffraction simulation is the opposite concept—it is
the idea of having a program that would accurately and quantitatively
predict every pixel on the diffraction pattern, including the location, size,
shape, and intensity profile of every Bragg spot, given a set of underlying
conditions. There is a long history of software packages geared toward
such simulation. Recent authors have used them for instructive purposes;
for example, Diederichs illustrated the effects of mosaicity and spectral
dispersion on the diffraction pattern (Diederichs, 2009), while Holton &
Frankel calculated the minimum crystal size needed for a complete dif-
fraction data set (Holton & Frankel, 2010). Given the current progress in
diffuse scattering, where it seems that the analysis of correlated motion
may be within reach (Wall, Wolff, & Fraser, 2018), it is appropriate to ask
whether simulation programs can and should be extended to cover the
diffuse pattern.

Let us first ask whether the purpose of simulation is solely educational,
or does it play a critical role in data analysis? After all, if we have a powerful
data reduction package, can we not simply interpret the data by direct
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measurement? For example, to process Bragg spots, we could run a spot-
finding program, and then integrate the signal by summing up all the
photons on the Bragg-spot pixels. The reality, however, is that Bragg spot
measurement is never direct. Rather, quantitative modeling has been an
important part of data reduction for decades, both for locating the Bragg
spots on the image, and for accurately finding their intensities. The critical
thing to appreciate is that the diffraction pattern is a combination of Bragg
reflections and background diffraction (which includes diffuse scattering).
Measuring a given Bragg spot always means quantifying the total signal and
then subtracting the background, all the while accounting for experimental
noise, which itself consists of several parts (counting uncertainty, instru-
ment readout, and systematic effects) and potential overlap of neighboring
spots. It is easily shown (Bourenkov & Popov, 2006) that the Bragg signal is
often weaker than the background, especially at higher resolutions. While
many strong spots may be noticed on a diffraction pattern, the weaker ones
are not visually apparent by simply looking at an image, and would not be
detected by a naïve spotfinding algorithm. Therefore, in real data reduc-
tion, the strong spots are used to deduce the lattice (the unit cell and crystal
orientation), then all the spots are predicted (both strong and weak), and
Bragg intensity is summed on the pixels considered to be at the predicted
positions (Leslie, 2006).

Therefore it is clear that quantitative modeling has an established role in
processing the data post-experiment, but what about for planning purposes,
pre-experiment? Here it needs to be acknowledged that the required mod-
eling tools are so familiar that they are used routinely without discussion. For
example, synchrotron beamline user interfaces like Blu-Ice allow the scientist
to decide whether the detector position will allow for high-angle Bragg
spots, or if instead the detector needs to be repositioned closer to the sample
(McPhillips et al., 2002). However, with today’s expanded focus on col-
lecting data to reveal diffuse scattering, it is prudent to re-examine the toolset
to make sure we are asking the right questions. Since the diffuse signal lies
between Bragg spots, it may be sensible to focus on whether the unit cell
parameters and detector distance permit sufficient pixels between the Bragg
orders to distinguish the low-intensity diffuse signal from the Bragg spikes.
Also, we may ask if the Bragg peaks might be broadened by other factors
such as beam divergence or dispersion, or the crystal mosaic structure. If the
Bragg peaks are too wide, neighboring spots may partially overlap and
preclude the observation of diffuse signal. The software described herein is
capable of illustrating these effects for a specific crystal form identified by the

Interpreting macromolecular diffraction through simulation 3



program user, in the form of a PDB-format structure file. It thus serves as a
mechanism for general education, with the added potential of driving the
successful design and execution of future experiments.

To frame the discussion that follows, it is useful to draw a distinction
between empirical and physical modeling approaches. In many cases, data
reduction workflows are empirical in the sense of not necessarily breaking
down the underlying physics of diffraction. A key example is the spot
analysis performed by the program xds (Kabsch, 2010a). The popularity of
that software is due in part to its approach to modeling of the size and shape
of the Bragg spot, employing a clever transformation to a coordinate system
in which all Bragg reflections share a common intensity profile described
by two empirical parameters. Under these conditions, the structure factor
(Fourier coefficient) intensity can be modeled by fitting a single scale factor
to the data.

In contrast to the empirical approach, we will take a physical approach
in view of our pedagogical purpose, to show how subtle properties of the
diffraction pattern arise based on more fundamental building blocks.
Familiar elements of the experiment are shown in Fig. 1, including the
X-ray beam, detector, crystal, and rotating goniometer, along with
parameters used to express the experimental geometry and sample
properties. While the list is not comprehensive, it is at least a minimum

BeamB

• Wavelength
• Bandwidth
• Incident flux
• Pink spectrum
• Polarization
• Divergence

DetectorD

• Distance
• Position
• Panel metrology
• Bad pixel mask
• Gain
• Pedestal
• Common mode
• Quantum efficiency
• Material/Thickness

CrystalC

P Profile

• Space group
• Cell parameters
• Cell variances
• Orientation
• Illuminated volume
• Mosaic rotation
• Mosaic block size
• Absorption path
• Radiation damage
• Structure factors
• Diffuse intensity

GoniometerG

ScanS

• Rotation range
• Scan angle
• Exposure time
• Dose
• Spindle axis
• Background

scattering

Fig. 1 A general list of experimental elements for physical modeling. The first three
columns list parameters relevant to all experiments, while the fourth column applies
only to rotation experiments, and not to serial crystallographic data, where every shot
is static with no known rotational relationship to any other shot.
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starting point. We are now poised to construct a diffraction model from
this set of parameters. There are indeed data reduction workflows that
adhere to physical modeling principles, in particular eval15 (Schreurs,
Xian, & Kroon-Batenburg, 2009). Here the physics is represented by four
statistical distributions, representing respectively the crystal volume,
mosaic texture, divergent beam, and wavelength spread. Random
drawings are performed from the four distributions, with the diffraction
pattern built up by thousands of repeated drawings. Parameters describing
the width of these distributions are fit interactively through a graphical
interface. Ultimately the information carried forward to structure solution
is derived from the simulation rather than directly measured from the raw
data. While primarily meant for small molecules, eval15 has also been
applied to protein crystallography (Kroon-Batenburg, Schreurs, Ravelli,
& Gros, 2015). Separately, James Holton described a similar ray-tracing
approach in great mathematical detail (Holton, Classen, Frankel, &
Tainer, 2014), and together we have collaborated to include his program
nanoBragg (Sauter, Kern, Yano, & Holton, 2020) in the Computational
Crystallography Toolbox (cctbx). We subsequently published the code
diffBragg (Mendez et al., 2020), to calculate first derivatives of the
nanoBragg simulation, for future use in parameter optimization calcula-
tions that will ultimately form a new data reduction pipeline. Other
current authors are also using simulation to address issues in data reduc-
tion (Brehm, White, & Chapman, 2023).

This chapter is an attempt to highlight our physical modeling approach
to a more general audience, while its eventual applications to data reduction
(and particularly to diffuse scattering data) are still under development. We
describe simtbx.sim_view, which supports the simulation functionality of
diffBragg within an interactive image viewer, and which was used as a
teaching tool at the 2022 School of Crystallography in Erice, Italy. Section 2
discusses current best practices for the experimental measurement of protein
diffuse scattering, Section 3 presents the general principles of pixelwise
image simulation, while Section 4 considers how to extend these pixel
models to at least some aspects of diffuse scattering. Section 5 explains how
simtbx models the complexity of real-world experiments, while Section 6
enumerates the model parameters that may be adjusted by the software user,
and some that await implementation. Section 7 speculates on future
directions for data interpretation, while Section 8 gives instructions for
downloading and using the package.
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2. Present status and future prospects for diffuse
scattering

The above discussion of macromolecular diffuse scattering empha-
sizes the importance of purposeful planning, with careful optimization of
the experimental geometry so that the diffuse pattern is well-measured and
clearly distinguishable from the Bragg pattern. It is therefore useful to
examine recent experience, noting how experimental choices can lead to
successful data collection. We focus the discussion on MCA, the 2020
paper of Meisburger, Case, and Ando (2020). Not only does this paper
present an exciting result dealing with correlated motion, it also has a
noteworthy methods section, serving as a road map for future experiments
by identifying critical best practices for measurement of diffuse scattering
data. We examine these practices here, especially considering their relation
to diffraction simulation.

2.1 Pixel array detectors
The MCA authors’ first experimental choice was to use a Pilatus imaging
detector, which uses pixel array detection (PAD), meaning the direct
detection of X-ray photons in a silicon crystal via the production of
photoelectrons. Critically, a knife-edge test (Fig. 2B) shows that PAD
technology reads out the photon signal in essentially the same pixel where
the photon is absorbed, thus producing a very sharp Bragg spot (Fig. 2D)
absent other effects [in this test, the edge of a knife held against the detector
at a slight angle is used to generate a sequence of pixels with smoothly
varying X-ray exposure (Koerner, Philipp, Hromalik, Tate, & Gruner,
2009; Philipp, Koerner, Hromalik, Tate, & Gruner, 2010)]. This is in
contrast to fiber-optic coupled detectors (Fig. 2A), where X-ray photons
are first converted to visible photons within a thin phosphor sheet, which
are in turn coupled through a fiber optic taper to a charge-coupled device
(CCD) detector. Here, the secondary visible photons generated by the
phosphor spread out (within the phosphor) in all directions (Fig. 2C), by
one or two pixels (Holton, Nielsen, & Frankel, 2012). Mathematically this
is described as a point-spread function (PSF) that is applied to the incident
diffraction pattern. While fiber-optic coupled detectors are very popular for
general structure solution, the PSF makes them less than ideal for diffuse
scattering, as it leaves less room to record the diffuse scattering pattern in
between Bragg spots. In addition, commercially available CCD detectors
exhibit artifacts that interfere with measurement of diffuse scattering when
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the number of X-rays recorded on a pixel becomes too large, due to the
spread of charge to neighboring pixels after saturation. While it is possible
to simulate the PSF with nanoBragg, and therefore possible in theory to
deconvolute its effects, we will only consider PAD technology for the
discussion of simulation.

2.2 Space group and unit cell
Studying lysozyme was a best-case scenario, as it is a well-known, relatively
small protein. Larger proteins to be studied in the future will have larger
unit cells, and by the nature of reciprocal space the resulting Bragg spots
will be closer together in image space. Crowded patterns will make it

Fig. 2 A comparison of imaging detector types. (A) In a fiber-coupled area detector,
X-rays are converted to visible photons in the phosphor layer (green), then coupled
through a fiber-optic taper (orange) to a charge-coupled device (blue). (B) In a pixel
array detector (PAD), the intensity response of one pixel as a knife edge is translated
across the detector surface, exposed to an X-ray flood field. Photons are directly
converted to detected charge in silicon, with most of the response confined to one
pixel. (C) A simulated image models the point-spread function of a fiber-coupled
detector, while (D) the corresponding simulation of a PAD shows much sharper Bragg
spots. Panel A: Reproduced from Holton et al. (2012), with permission from IUCr Journals.
Panel B: Adapted from Koerner et al. (2009), with permission from IOP Publishing.
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harder to detect the diffuse signal in between Bragg spots, but this might
be mitigated by simple measures such as moving the detector further from
the sample. For this paper it was a judicious choice to use a crystalline
lysozyme form in space group P1, since lysozyme normally crystallizes in
space group P43212, and thus produces a Bragg pattern eight times as
crowded as the one studied here. Higher-symmetry crystals provide more
multiplicity, which is advantageous for increasing signal-to-noise and
improving characterization of data quality. In contrast, lower-symmetry
crystals provide more independent measurements for diffuse scattering,
which can be advantageous in modeling. These examples support the
argument that there is a potential role for simulation in the planning of dif-
ficult future experiments. One can read a PDB file to set the symmetry and
unit cell, set the detector type and geometric parameters, and use a physical
model to predict the size and shape of spots. One can then inspect for overlap,
either from spot to spot, or between the spots and the diffuse halo.

2.3 Ambient temperature
It has become clear over the last decade that proteins exist in a con-
formational ensemble that can be observed crystallographically (Woldeyes,
Sivak, & Fraser, 2014), with the likelihood that enzyme function and
regulation are determined by contact networks that can be modulated in
response to the local environment (van den Bedem, Bhabha, Yang,
Wright, & Fraser, 2013). Furthermore, cryopreservation techniques that
have long guarded against radiation damage are best avoided, in order to
sample conformation space under operating conditions (Keedy et al.,
2015). Therefore the MCA authors were particularly concerned with
keeping the radiation absorbed dose below 65 kGy, thus protecting against
both general damage that reduces resolution, and specific damage that
accrues to relevant chemical species like disulfide bonds and metallocenters
in enzymes. Monitoring the electron density maps in real time during
rotational data collection, they translated the crystal to a fresh position in
the crystal at the first sign of damage. This was possible because large
crystals were available in the 100–200 µm range.

If large crystals are not available in future studies, the best path forward
may lie with serial crystallographic methods. Here the experiment is
performed at ambient temperature, but only one shot is taken per crystal
to avoid radiation damage. Thus there is a need to accumulate the full
pattern by merging thousands of patterns from small crystals in random
orientations. The serial approach is available at either synchrotron sources
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(with millisecond up to second time scales), or at X-ray free electron
lasers (XFELs, where pulses, tens of femtoseconds long, enable pump-
probe experiments in the femtosecond to microsecond regimes). In both
cases, there is a capability for performing time-domain studies under
ambient conditions. However, serial crystallography also presents chal-
lenges such as the partiality of Bragg spots, as the data are collected with
still shots rather than with goniometer rotation. XFEL X-ray pulses also
have significant X-ray dispersion. Simulation programs offer tools
for understanding (and therefore mitigating) these problems, as will
be discussed.

3. Image simulation methods

Before mentioning the details of image simulation, we will outline
the mathematical framework, which is the same framework used to explain
crystallography in a graduate-level class. The crystal is thought of as existing
in direct space, and the diffraction pattern in reciprocal space, with the two
adjunct spaces co-rotating, and related to each other by Fourier transfor-
mation (Scheme 1).

A copy of the molecule is found at each position in the crystal lattice.
Mathematically this is the operation of convolution (⊗), and its Fourier
transform is a multiplication. Specifically, in the diffraction pattern, the
molecular transform is sampled at each reciprocal lattice point.
Experimentally, the Bragg spot intensity gives us the structure factor
(squared) for the corresponding Miller index. Furthermore, the Ewald
sphere construction (Fig. 3) reminds us that we only observe Bragg spots
that are exactly in the diffraction condition.

We need a few proportionality factors to make sure our simulated
image is calculated with sensible units (photons/pixel) and is quantitative
on an absolute scale. Various formulae go back at least a hundred years
(Darwin, 1914) but the modern equivalent may be summarized as (Eq. (1)):

Scheme 1 Initial framework for simulation.
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I J r P N F h s( ) | ( )| F ( )e 0pixel 0
2

pixel cells cell
2

latt
2=

where J ( )0 is the number of photons incident on the crystal, re is the radius

of the electron, P is a polarization factor (Kahn et al., 1982), pixel is the
solid angle subtended by the pixel, and Ncells is the number of illuminated
unit cells. The factor h|F ( )|0cell

2 is just the familiar structure factor intensity
at a particular Miller index h0. Finally for our initial discussion, sF ( )latt is a
simple delta function, telling us if the reciprocal lattice point is on the
Ewald sphere (in diffracting condition), given our unit cell and crystal
orientation that determines the scattering vector s.

From here we can add nuanced detail to our mathematical treatment.
The statement that Flatt(s) is just a delta function must be an over-
simplification, since that would imply seeing only one Bragg spot at a time
as the crystal rotates on the goniometer, rotating successive reciprocal
lattice points through the Ewald sphere. In reality we know that diffraction
patterns are crowded with Bragg spots. Let’s re-examine the math implied
by Scheme 1, and introduce further complexity, Scheme 2:

Fig. 3 Fundamental framework for image simulation. As implied by Scheme 1, (A) the
adjunct spaces representing crystal (direct) and diffraction pattern (reciprocal) are (B)
related by Bragg’s law, relating the wavelength , the scattering angle 2θ, and the
spatial resolution d. The red reciprocal lattice point (located a reciprocal distance 1/d
from the reciprocal origin O) satisfies the diffraction condition and therefore produces
a scattered ray, reaching the indicated detector pixel. Although the adjunct spaces co-
rotate, their rotation origins differ in the Ewald sphere construction (B), with the
crystal rotating around the sphere center, and the reciprocal lattice rotating around O.
Adapted from Sauter et al. (2014).
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On reconsidering, the reciprocal lattice point is a delta function only if
the crystal lattice is infinite in extent (due to the Fourier transform of an
infinite sine wave being a single spatial frequency). We may think of a real
crystal being constructed, mathematically, as an infinite crystal multiplied
by a block mask that describes the volume of matter that diffracts coher-
ently, i.e., where the scattering from unit cells constructively interferes to
produce Bragg spots. As Scheme 2 shows, this has the effect of placing a
reciprocal lattice point volume (RLP volume) at every reciprocal lattice
position, again the operation of a convolution. This reciprocal object, the
Fourier transform of the coherently-diffracting mosaic block, is finite in
size and thus gives rise to the crowded pattern of Bragg spots.

Let’s consider a possible mathematical form for the RLP volume.
Suppose that the block mask (the coherently scattering mosaic domain) is a
rectangular parallelepiped of N3 = 7 × 7 × 7 unit cells. We get the familiar
Laue interference pattern (Eq. (2)),

N N N
sF ( )

sin h
sin h

sin k
sin k

sin l
sin l

latt × ×

where h, k, and l are the reciprocal space coordinates (Miller indices), and
specifically for N= 7, this gives rise to five rectangular interference fringes
between every pair of Bragg spots (Fig. 4A). While it is difficult to observe
this pattern in practice, there is one famous XFEL experiment where
diffraction was collected from single mosaic blocks, giving rise to precisely
this type of pattern (Chapman et al., 2011). In a more typical experiment,
the crystal might consist of numerous mosaic blocks all of slightly different
sizes and shapes, with the total diffraction being the incoherent sum of the
coherent diffraction from each block (Fig. 4B). Therefore it no longer
makes sense to speak of a specific value of N, but rather a Gaussian dis-
tribution, such that the overall RLP shape might reflect the average block
size 〈N〉 while taking a Gaussian form (Eq. (3)),

esF ( ) N h
latt

( )2

Scheme 2 Revised simulation framework taking into account the finite size of the
mosaic block.
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Importantly, this implies a Gaussian falloff of pixel intensity when the
RLP is a reciprocal space distance h away from the Ewald sphere. The
behavior may be summarized as follows: when the average block size 〈N〉 is
small, many Bragg reflections are visible because RLPs are in diffracting
condition relatively far from the Ewald sphere; and vice versa, with few
reflections being visible if 〈N〉 is large (Sauter et al., 2014).

This gives us some fairly sophisticated grounding for understanding the
finer points of diffraction (Pflugrath, 1999; Sauter & Adams, 2017). As the
RLP volume passes through the Ewald sphere (due to a goniometer
rotation), the intensity of a Bragg spot first increases, then reaches a
maximum, and then decreases, eventually to zero (Fig. 5B). This is the
famous “rocking curve”. The rocking curve might be narrower (in rota-
tion) than one X-ray frame, or it might extend over several consecutive
frames in the rotation series. To correctly measure the structure factor, we
must integrate the number of photons over the full rocking curve, and such
a Bragg spot would be considered to be “fully measured”. Interestingly, as
the RLP passes through the Ewald sphere (Fig. 5A), the s1 vector repre-
senting the scattering direction (and which points from the Ewald sphere

Fig. 4 Size and shape of the mosaic block affects the Bragg spot geometry. Each reci-
procal lattice point may be thought of as a Fourier transform of the average coherently
scattering block within the crystal (Scheme 2). If the block is a rectangular parallelepiped,
seven unit cells on an edge (Eq. (2)), the simulated pattern is as shown in (A), with five
fringes appearing between every Bragg spot center. In contrast, if the block geometry
draws from a 3D Gaussian distribution with a mean width of N = 7 cells (Eq. (3)), the
generated pattern is as shown in (B). Crosshairs indicate the direct beam.
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center to the RLP center) changes slightly, just a fraction of a degree. The
visible manifestation is that Bragg spots change their position very slightly
(Fig. 5C), as the crystal rotates on an axis perpendicular to the beam. It is a
small effect but it should be accurately reproduced by the simulator.

What happens with the rocking curve during serial crystallography? Here
there is no goniometer rotation; the rocking curve is sampled at a single
orientation only. Without the context of a model, we don’t know if we are
near the rocking curve peak or near the tails. In short, we are in
the uncomfortable position that the thing we measure (the Bragg spot
intensity) is not at all proportional to the thing we are seeking (the integrated
area of the rocking curve). The initial approach in serial crystallography was to
simply improve the outcome with overwhelming multiplicity of measure-
ment. A more sophisticated approach is to use a model to determine a separate
correction factor for each Bragg intensity, so our partial measurements can be
converted to the full spot equivalent. Physics-based modeling is especially
applicable here, especially if iterative parameter estimation (postrefinement) can
be used to derive best estimates of the crystal, detector, and beam parameters,
along with the mosaic block size 〈N〉. Many software authors addressed this

1/λ diffracted
ray, s1

O
2θ

X-rays

Ewald
sphere

rotation angle →

sp
ot

 in
te

ns
ity

 →

rotating
reciprocal
lattice point

A

B

C spindle rotation →

all superimposed

0.0 – 0.25° 0.25 – 0.5° 0.5 – 0.75°

Fig. 5 Bragg spot position changes slightly with crystal rotation. (A) As the crystal
rotates on the goniometer spindle, a reciprocal lattice point (RLP) co-rotates thru the
diffraction condition (the Ewald sphere). However, the s1 vector, indicating the
direction of the corresponding Bragg spot, makes a slightly larger scattering angle 2θ
when the RLP is inside the sphere, than when the RLP is outside. (B) The rocking curve
indicates that the diffracted spot intensity reaches a maximum when the RLP inter-
sects the Ewald sphere surface. (C) Experimental diffraction patterns collected at
increasing spindle rotations reflect these effects. Panels A, B: Reproduced from Sauter
and Adams (2017) with permission from the Royal Society of Chemistry. Panel C: Adapted
from Pflugrath (1999).
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problem in the last decade, leading to a dramatic improvement in the electron
density maps (Ginn et al., 2015; Kabsch, 2014; Kroon-Batenburg et al., 2015;
Sauter, 2015; Uervirojnangkoorn et al., 2015; White, 2014).

4. Extending simulators to diffuse scattering

We are now in a position to include some limited information about
diffuse scattering in the simulator. First let’s give a plausibility argument.
We know that there are several contributing factors to the diffuse scattering
(Fig. 6) among which the inelastic Compton scattering is the least inter-
esting for molecular function, and will not be addressed here. The isotropic
diffuse signal contains interesting information about internal motions, but
varies on a reciprocal length scale longer than we are concerned with here.
Of the remaining variational diffuse features, there is a cloudy pattern
observed between lattice layers that informs us about short-range correla-
tions in the molecular motion; this will also not be discussed here. Finally
there is a pattern of intense halos that surround each Bragg spot, which are
visible at the lattice positions even after Bragg spots have been removed
(Fig. 6A). These halos reflect the long-range correlations on scales of a few
unit cells. An alternative representation is shown in Fig. 6B taken from the
MCA paper, showing the scattering intensity around one Bragg spot as a
function of goniometer rotation. The largest signal (blue) is just the rocking
curve for the Bragg spot. In this particular experiment, where the spindle
was rotated in steps of 0.1°, the full width of the Bragg spot was typically
found to be on a single rotational step. The intense halo also has a char-
acteristic footprint (black), with a width extending about 1 or 2° on either
side of the central peak. The fact that we can clearly see the intense halo as
a separate phenomenon, which mimics the well-understood rocking curve
producing the sF ( )latt factor in Eq. (1), suggests that we could simply add
another term to our simulation that would represent the reciprocal space
form of the intense halos (Eq. (4)):

( )
I J r P N h

s s

( ) |F ( )|

F ( ) F ( )

e 0pixel 0
2

pixel cells cell
2

latt
2

diffuse halo
2

= ×

+

Possible functional forms for the F2diffuse halo(s) term for protein crystals
have been discussed in the literature for at least 30 years. Caspar et al.
expressed the idea of an autocorrelation function to express an exponentially
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decreasing effect with correlation length γ (Caspar, Clarage, Salunke, &
Clarage, 1988). The Fourier transform of this function gives an expression for
the diffuse halo density in reciprocal space, which models the black curve of
Fig. 6B. Since we are discussing long-range correlations between unit cells, a
first estimate of the length γ could be 50 Å. Anisotropic correlation can also be

isotropic
diffuse
signal

inelastic
Compton
scattering

variational
diffuse
features

cloudy pattern,
short-range 
correlations

intense halos,
long-range
correlations

A

B

spindle angle (°)

in
te

gr
at

ed
 c

ou
nt

s

Fig. 6 Summary of the diffuse scattering pattern from macromolecular crystal-
lography. (A) A section through reciprocal space, highlighting various contributions to
the diffuse isotropic scattering (left) and diffuse anisotropic, or variational scattering
(right). (B) Detail of the scattering focusing on one Bragg spot, as the goniometer
spindle rotation brings the reciprocal point through the Ewald sphere. The blue curve
is the rocking curve proper, with its sharp peak at the central position (note the
logarithmic scale of intensity), while the black data originate from the long-range
correlations, forming an intense halo around the tails of the Bragg peak. Adapted from
Meisburger et al. (2020).
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represented, in which case the single parameter γ would be replaced with a
tensor . Finally, an additional parameter σ gives the vibrational amplitude of
the motion, typically of magnitude <1 Å. We cannot go into mathematical
detail here, but the reader may refer to Michael Wall’s calmodulin paper
(Wall, Clarage, & Phillips, 1997) where Wall Eq. (8) essentially gives the
F s( )diffuse halo

2 term, with Wall Eq. (9) used for the autocorrelation function.
The reader is also referred to Meisburger Eqs. (138) to (141) in a recent
review (Meisburger, Thomas, Watkins, & Ando, 2017).

Eq. (4), with its diffuse halo term, is incorporated into the simtbx.
sim_view simulator associated with this chapter (Fig. 7).

5. Complexity of the simulation

It should be emphasized that the Eq. (4) model for pixel intensity is
valid only for a still shot. If the experiment includes goniometer rotation,
we take a simple summation over intermediate goniometer rotational
positions (Eq. (5)),

( )
I J r P N h

s s

( ) |F ( )|

F ( ) F ( ) .

e 0pixel 0
2

pixel cells cell
2

spindle
rotation

latt
2

diffuse halo
2

= ×

+

For example, we might represent a 0.1° rotation as a sum over 10 still
shots spaced 0.01° apart. The changing rotational position does not appear
explicitly but is implicit in Eq. (5). The exact math is beyond the scope of
this chapter, but we can show the basic idea (and the reader is invited to
skip this paragraph if only interested in the broad framework). In simplest
terms (Fig. 3B), let’s define the incident beam vector as s0, and the scattered
ray vector as s1, both with a length of inverse wavelength (1/λ), and
s s s1 0= . Then the fractional Miller index h implicitly used for

s sF ( ) F ( )latt
2

diffuse halo
2+ is (Eq. (6)),

h R As=

where Rφ is the rotation matrix corresponding to a spindle rotation of φ,
and A is the direct space orientation matrix (Eq. (7)),

a a a
b b b
c c c

A
x y z

x y z

x y z

=
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consisting of the x, y, and z components of the unit cell basis vectors a, b,
and c.

Another source of computational complexity is the phenomenon of
mosaic rotation. In Eq. (5) we are treating all the mosaic blocks of the
crystal as having the same exact orientation represented by matrix A. This
may be a reasonable approximation for work at ambient temperature.

Fig. 7 Snapshot of the simtbx.sim_view image viewer, simulating the diffuse halo
pattern from calmodulin crystals (PDB entry 1CM1), which reflects a long-range cor-
relation between unit cells, according to the model of Wall et al. (1997), Eq. (8).
Parameters for the correlation length γ and vibrational amplitude-squared 2 may be
specified by the user to empirically fit experimental data. In this case, streaked diffuse
features were produced by multiplying γ by an anisotropy factor along the a–b and c
unit cell directions in direct space (leaving a+b alone), and multiplying 2 by the same
anisotropy factor along the a–b direction (leaving a+b and c alone). The Laue sym-
metry was then applied, leading to streaks along both the a* – b* and a* + b*
directions in reciprocal space. In the present case, this type of anisotropy was purely
an ad hoc decision allowing us to generate a simulation that resembles the data in the
1997 paper, but this exercise suggests that correct models may require similar ani-
sotropic features in the general case.
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However, from several decades experience with cryopreserved crystals, we
know that the quick cooling process essentially shatters the crystal into
many mosaic blocks of slightly different orientations, such that the Bragg
spots can actually appear as tiny arcs (Fig. 8D) concentric on the direct
beam (Nave, 2014). We handle this in our simulation by adding another
large sum over individual mosaic rotations (Eq. (8)),

( )
I J r P N h

s s

( ) |F ( )|

F ( ) F ( )
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spindle
rotation
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latt
2
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2

= ×

+

where the rotations represent a Gaussian distribution over small angles with
randomly distributed axes of rotation.

Fig. 8 Simulations that differ in the crystal’s mosaic rotational disorder but that are
otherwise identical. (A) Perfectly ordered mosaic blocks (rotational full width η = 0°).
(B) Small mosaicity typical of ambient temperature crystals (η = 0.1°). (C) Medium-high
mosaicity found with cryopreserved samples (η = 0.6°). (D) Large mosaicity, with arc-
lets indicating high disorder (η = 1.5°). Courtesy of James Holton.
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A final source of complexity is the beam dispersion. While synchrotron
beamlines are often monochromatic (with a dispersion of ∼0.01% in energy),
XFEL sources have a broader dispersion of ∼0.3%, with a unique mean energy
for each shot, and a spiky spectrum with a stochastic shape. We incorporated
100 experimental XFEL spectra into the simtbx.sim_view simulator so that the
user can sample the slight differences in the diffraction. These are accessed by
the “New XFEL pulse” button in the GUI. Computationally we incorporate
spectral shape into the calculation with (Eq. (9)):
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where the factor J ( )0 refers to the number of incident photons within each
wavelength interval. The effect of spectral dispersion is to transform Bragg
spots into radial streaks emanating from the direct beam position (Fig. 9).

Considering the triple summation, Eq. (9) may not be the most com-
putationally efficient design for image simulation, and alternate ideas are
welcome. To help compensate for the combinatorial footprint, we have
implemented a GPU-accelerated version, presently available for users with
Linux machines with Nvidia graphics cards.

6. Parameter space and implications for simulation

Here we offer further discussion of each of the parameters thus far
identified as relevant to simulating the diffraction experiment, with a brief
overview of how we anticipate the user may interact with them via the
simtbx.sim_view display.

6.1 Incident beam
The X-ray beam can be described in terms of its wavelength, flux,
divergence, polarization, shape, and bandpass or spectrum. We ignore
shape as the area exposed to the beam is bundled into illuminated volume,
and the shape itself has no effect. We are also implicitly ignoring the pulsed
nature of an XFEL beam as well as flux, which again do not matter if we
are not addressing radiation damage or any other changes over the course
of the exposure. Wavelength is clearly important—this determines dif-
fracting conditions—and therefore bandpass also concerns us. Here we
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must consider the possibilities case wise. If we are working with a
monochromatic beam that we are content to model as perfectly mono-
chromatic, we use a single wavelength. If we choose to model bandpass,
our model currently approximates this as a histogram of contributions from
different energy channels and sums these contributions. This approach can
handle a pink beam or an XFEL spectrum equally well. We have three
spectrum shapes available in simtbx.sim_view: monochromatic, Gaussian, or
SASE (self-amplified spontaneous emission, applicable to XFEL experi-
ments). As just mentioned, we include 100 measured SASE spectra from
LCLS in our simulator, and the binning of this histogram was selected to
preserve the different shapes of these spectra. The binning is not a para-
meter exposed to the user at present, but it would be trivial to make this
change if the need arises. The effect of a noticeable bandpass or spectrum is
a radial streaking of each Bragg spot (Fig. 9D). It is more noticeable when a

Fig. 9 Simulations that differ in the dispersion of the incident beam but that are
otherwise identical. (A) Low dispersion (ΔE/E = 0.014%) typically produced by a syn-
chrotron monochromator equipped with a Si 111 crystal. (B) Medium dispersion
(ΔE/E = 0.25%) found in an XFEL pulse. (C) Pink beam, ΔE/E = 1.6% and (D) Laue,
ΔE/E = 5.1%. Courtesy of James Holton.
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large mosaic rotation also spreads peaks over many pixels, and under the
right conditions, the user can observe realistic shot-to-shot differences
when simulating the exposure of the same crystal to different XFEL pulses.
Finally, divergence and polarization are properties that are important to
model correctly, but typically are fixed at a particular beamline, and are
known quantities. We therefore incorporate these into the model but do
not expose them as variables to adjust or refine.

6.2 Unit cell and symmetry
The reciprocal lattice itself scales with the unit cell of the crystal, producing
a global expansion or contraction of the diffraction pattern on the detector.
We include each unit cell parameter as an independently adjustable variable
in the simulation, as we have often found ourselves in the position of
observing a slightly different unit cell than expected during an experiment.
Where applicable, crystal symmetry is enforced so that symmetry-related
axes scale together. The user is encouraged to explore multiple orientations
when adjusting unit cell parameters, since the effects of scaling each axis
will be more or less visible in different orientations—when the beam
is aligned with one of the unit cell axes, changes in that axis length will not
alter the spot-to-spot distance. The “randomize orientation” button can be
useful for exploring many orientations.

6.3 Crystal orientation
The orientation of the crystal with respect to the beam determines which
Bragg reflections will be observed (Fig. 3B). An initial crystal orientation is
acquired during indexing, but in practice, especially for serial crystal-
lography, small errors may remain. We measure this misorientation as
rotational offsets on the x-, y-, and z-axes, and denote these rotx, roty and
rotz, respectively. Rotz is easy to detect and correct, since this angle rotates
spots about the origin in the plane of the detector. Rotx and roty are more
difficult. These latter two have almost no effect on the position of spots on
the detector, but do impact which reflections meet the diffracting condi-
tions. In rotation crystallography we have the opportunity to integrate over
the entire rocking curve as the reciprocal lattice point rotates through the
Ewald sphere, so a slight misorientation is tolerable. In contrast, recall that
in serial crystallography we accumulate only a large number of slices on
individual still shots. This renders us extremely sensitive to any mis-
estimation of a reflection’s position relative to the Ewald sphere: Although
each point in the reciprocal lattice is smeared out into a small (reciprocal)
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volume by crystal imperfections, allowing us to record a partial spot even
when we are not perfectly in diffracting conditions, the resulting intensity
changes dramatically with slight rotations of the crystal. All three (mis)
orientation angles may be adjusted in the simtbx simulation. To aid the user
in viewing the different effects of rotations in x, y and z, we also simulate a
“reference” crystal, which begins as identical to the primary simulated
crystal but does not change as the simulation parameters are updated. (It can
be brought back into register with the “Update pinned image” button.)
The user toggles whether the reference is displayed in red; the primary
simulation is always displayed in cyan, and the two combine to produce
white where pixel intensities match perfectly. A spectrum emerges at
positions where intensities are only slightly different.

6.4 Mosaic character
Mosaicity describes variation among individual coherently scattering blocks
within a crystal, and there are multiple approaches to parameterizing this
effect (Nave et al., 2016). In simtbx.sim_view we focus on the distribution of
mosaic block orientations. We presume this to be a three-dimensional
normal distribution (over rotx, roty, and rotz) and thus sample a repre-
sentative set of orientations (Eq. (8)). Interference between the mosaic
blocks is ignored: the coherent diffraction from each block is computed
separately and summed to produce the simulated diffraction pattern. These
simplifications appear to be reasonable for both cryocooled microcrystals at
synchrotrons and crystals at ambient temperature at XFELs, although when
mosaic domains are individually, explicitly modeled, there may be further
improvement in the agreement between measured and simulated images.
Additional parameters of mosaicity not modeled here include variation in
unit cell dimensions and variation in the mosaic block size, N. The former
would produce uniform radial streaking of Bragg peaks and the latter
would produce nonuniform distortion of the peaks. As we are primarily
interested in applying these simulations to cases where other effects on spot
shape are much stronger, we have omitted these variables for now. For
simplicity we model the mosaicity as isotropic. It is possible to model
anisotropic rotations and block sizes in nanoBragg and diffBragg, and this
functionality could be extended to simtbx.sim_view in the future.

6.5 Diffuse scattering
As discussed earlier in this chapter, several types of diffuse scattering arise from
different physical phenomena, and only the diffuse halos around Bragg peaks
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produced by long-range correlations on the order of several unit cells are
modeled in our simulation. By default diffuse scattering is disabled in
simtbx.sim_view since it is an expensive calculation, but it can be enabled with a
toggle switch. (We recommend selecting a monochromatic beam or turning
off diffuse scattering while exploring other parameters.) Halos are para-
meterized by a correlation length γ in Ångstroms, and the amplitude σ of the
correlated vibrations also in Ångstroms (Fig. 7). These also govern the strength
of the diffuse signal relative to the Bragg signal. Diffuse scattering may be either
isotropic or anisotropic, and we have incorporated a unitless anisotropy term in
our simulation to reflect this, which at present is assigned a specific direc-
tionality. An increasingly thorough treatment of diffuse scattering is a high
priority for ongoing work (Peck, Poitevin, & Lane, 2018; Wall et al., 2018).

6.6 Oscillation width and rotation
Our simulator was designed with serial crystallography as the target use
case, but we later added a rotation mode in order to explore rotation
experiments as well. Note that this mode is much slower because each
oscillation image is produced as the sum of a series of still shots, so we
generally do not recommend adjusting other variables with this mode
enabled, and we especially caution against enabling it at the same time as
diffuse scattering. Rotation experiments are presumed to be carried out at
synchrotron sources, so we fix the spectrum shape to monochromatic in
this mode. The subset of parameters displayed in the GUI is adjusted
accordingly when switching between modes.

6.7 Background and noise
The simtbx.sim_view viewer still awaits features that usefully depict back-
ground and noise. Air and water scattering are well-understood and in
principle easily modeled. There may be other known sources of scattering
or absorption as well, but these two typically dominate, producing familiar
isotropic patterns. Several types of noise arise from the experiment. Shot
noise is a consequence of the statistical likelihood of observing a particular
photon given a ground-truth photon rate, and it follows a Poissonian
distribution. The shorter the exposures (and fewer photons collected on
each image), the greater the fractional contribution of shot noise to each
image. There is also readout noise, a result of dark current, which is the
signal registered by the detector in the absence of any photons. This is
because at the stage where photons impinging on the detector are con-
verted to electrical signal, the same process of charge separation into
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electrons and holes very occasionally occurs spontaneously. The likelihood
of these spontaneous events is governed by the Boltzmann distribution and
increases with temperature. Readout noise, or simply read noise, follows a
Gaussian distribution. Detectors that do not convert X-ray photons directly
to electron–hole pairs—indirect detectors, as opposed to direct detectors—
are also subject to a point-spread function (PSF; Fig. 2A). X-ray detectors
also do not have perfect linear responses, and diffraction requires a very
large dynamic range compared with direct imaging. Ideally each additional
photon hitting the detector would register as one additional photon event,
but at very high photon counts, this response drops off. This last effect can
be surprisingly difficult to identify from a diffraction pattern directly, as it
does not alter the expected Bragg peak shapes. Detectors usually have some
variation in responsiveness from pixel to pixel even after calibration,
manifesting as slightly different gains, and typically have a few “hot” and
“cold” pixels that deviate more dramatically. Cosmic radiation occasionally
interacts with the detector, producing a strong, sharp signal at a random
location; this can be distinguished from a hot pixel by the fact that it
appears on only one image. In simtbx.sim_view, we presume an ideal
detector and avoid modeling most of these phenomena. nanoBragg and
diffBragg do, however, have the functionality necessary to handle them.
The relative contributions of various sources of noise are well worth
exploring in a detailed simulation.

7. Conclusions

With the expectation that image simulation can serve as both an
informative teaching reference and an aid for planning future experiments,
this chapter provides a first implementation of the graphical program
simtbx.sim_view. However, given its focus on pre-experiment modeling, the
present software represents only a starting point. Ultimately we wish to
include a mechanism for post-experiment data interpretation. At minimum,
this would require the development of new code to simultaneously display
the computational model alongside the experimental data. With this type of
interactive display, the software user could then adjust the model parameters
so that the model matches the data as closely as possible. This is essentially the
data processing paradigm of eval15 (Schreurs et al., 2009), except that the
parameter set would be expanded to include aspects of the diffuse scattering
such as correlation length, vibrational amplitude and anisotropy.
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We certainly expect that most parameter optimization will be performed
automatically, just as is currently done with conventional diffraction
experiments. Indeed, the program diffBragg, which provides the foundation
for simtbx.sim_view, is capable of computing the first-derivative of the
simulated diffraction pattern with respect to each parameter. Therefore it is
envisioned that it can be used for iterative inverse modeling, using gradient-
descent methods to minimize the variance between model and experiment
(Mendez et al., 2020). However, we caution that this prospect of automated
optimization does not obviate the need for developing an intuitive under-
standing of the underlying physics. We can easily imagine a situation where
numerous physical parameters (such as the unit cell and mosaic structure) are
refined within an automatic data reduction pipeline, only to find that
the model has radically diverged. Interactive display of model and data is the
final safeguard, to verify that the numerical metrics of variance are telling the
truth, and that published model is comfortably within reason.

The Meisburger study of diffuse scattering from lysozyme (Meisburger
et al., 2020) benefited from an uncrowded diffraction pattern where the
separation between Bragg and diffuse features was readily accomplished. In
future experiments, a combination of factors may contribute to more
crowded and complex patterns; these factors include larger unit cells,
smaller mosaic block sizes, and the use of disperse X-ray beams at XFEL
sources, used in the pursuit of time-resolved data that are free from
radiation damage. In this event, image simulation provides a potential
avenue to deconvolute overlapping signals: either overlapping Bragg spots,
or Bragg spots overlapping with diffuse halos. Deconvolution has been
described in the literature (Bourgeois, 1999; Schreurs et al., 2009), but has
not been common practice. However, in the intervening years computa-
tional hardware has advanced such that GPU acceleration is widely avail-
able. A fresh look at simulators is thus warranted, both to facilitate
deconvolution and simply to provide the best physics-based profiles for
data reduction to most effectively account for experimental uncertainty.

8. Software availability

Instructions and files for running simtbx.sim_view may be found at
https://github.com/cctbx-xfel/erice_2022. Optimal performance requires
a Linux machine accelerated with an Nvidia GPU; currently both Volta
and Ampere architectures are supported. Instructions for installing and
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running the software, plus a short program description, will be kept up to
date and accessible in the aforementioned Github repository. Github makes
provision for users to report bugs, request features, and contribute code.
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