ARTICLES

Processing serial crystallographic data from XFELs or synchrotrons using

the cctbx.xfel GUI

Aaron S. Brewster?, Iris D. Young?b, Artem Lyubimove, Asmit Bhowmicks, and Nicholas K. Sauter2
aMolecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
bDepartment of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
cStanford Synchrotron Radiation Laboratory, SLAC National Accelerator Laboratory, Menlo Park, CA 94025

Correspondence email: asbrewster@lbl.gov, nksauter@lbl.gov

Introduction

The most important question when conducting a
serial crystallographic (SX) experiment is “Have I
collected enough data?” SX experiments at X-ray
free electron lasers (XFELs) can produce millions
of images with hundreds of thousands of
diffraction patterns. Each pattern needs to be
indexed to determine the crystal orientation
matrix and unit cell dimensions, and then
integrated to produce intensities for the observed
Miller reflections. These images are ‘stills’,
meaning they are collected without rotating the
crystal in the beam due to short pulse length,
usually 10s of femtoseconds long (reviewed in
Bergmann et al (2017)). Similarly, serial
crystallography experiments at synchrotrons can
produce hundreds of thousands images, also all
stills, using fixed-target mounting systems on
chips or loops and then raster-scanning through
the crystals without rotating the sample in the
beam (reviewed in Sierra et al (2018)). The
amount of data produced by either approach can
make it difficult to determine whether sufficient
data have been collected.

While estimates of completeness, multiplicity of
measurements, signal vs. noise, cross-correlation
statistics, and unit cell isomorphism can all give
useful insights as to dataset quality, knowing
when a dataset answers a particular scientific
question can only come from examining the
electron density maps. The specifics generally
depend on the type of experiment being
performed, but they usually rely on examining
difference density in the maps, often comparing
two time points, two mixing conditions or other
such treatments against each other. Time at an
XFEL is scarce, therefore feedback as to sample
quality and data completeness as determined
from electron density maps needs to be available
as fast as possible.

Challenges to rapid data processing include
ensuring accurate detector calibration,

Computational Crystallography Newsletter (2019). 10, 22-39

aggregating and visualizing hit rates, crystal
quality, automated processing job submission,
monitoring the available computing systems,
keeping samples and associated metadata
organized, and rapidly merging data to create
electron density maps. Particularly at XFELs
where experimental teams can involve 20+
scientists, results need to be communicated
effectively to all parties, including sample
preparation teams, beamline scientists, sample
injection specialists and data analysts. Finally,
processing needs to be automated to allow
scientists to spend time studying the data itself
rather than focusing on the mechanics of
submitting many jobs and monitoring their state.

To solve these challenges we have developed the
cctbx.xfel GUI (graphical user interface). This
program, under active development, allows users
to rapidly move through all phases of serial
crystallographic data reduction in an organized
matter, taking advantage of whatever local
computing resources are available. The GUI is
open source and part of the cctbx and DIALS
software packages (Grosse-Kunstleve et al.,, 2002,
Hattne et al,, 2014, Winter et al.,, 2018).

In this article we detail two tutorials for
processing XFEL data using the cctbx.xfel GUI,
including refining the geometry. In the first
tutorial we use data from Nakane et al. (2016a).
This is an iodine derivatized bacteriorhodopsin
protein sample (HAD13a) collected on the octal-
sensor MPCCD detector at SACLA. This dataset is
useful for a tutorial since the initial geometry is
good enough to index out of the box and it doesn't
require further software libraries. In the second
tutorial we process a thermolysin dataset
collected on the CSPAD detector at LCLS, following
the approaches shown in Brewster et al. (2018).

We also show here how the GUI could be used to
process data from synchrotrons, where the output
files are typically stored in directories filled with

22

ARTICLES I

single image files. The tutorials here provide a
demo designed to run on a small Linux node
outside of the facilities of interest, but they can be
adapted easily to run at full scale either at these
facilities or other computing environments.

SX data processing workflows

We re-state here what we wrote in our previous
newsletter article (Brewster et al, 2016), updated
to be more general across SX experiments outside
of LCLS. It has been our experience that analyzing
data collected using serial crystallography (SX)
typically requires three distinct processing stages
labeled here calibration, discovery, and batch.
Calibration refers to refining the geometry of the
experiment, but also includes some pre-
processing steps, such as creating bad pixel masks.
Using these inputs, initial parameters are derived
that describe the experiment, such as detector
distance, any beam correction parameters needed
and so forth. During discovery, the user examines
individual diffraction patterns and searches for

appropriate parameters for data reduction,
including hitfinding parameters if used,
spotfinding parameters, target unit cell

dimensions, crystal symmetry and an optimal
merging strategy. Finally, when optimal software
configuration is established, the user enters batch
processing mode, endeavoring to maximize the
parallel computing options offered and, during
live experiments, attempting to provide
constructive feedback to beam line operators in as
close to real-time as possible. After the
experiment, the user will often need to reprocess
the runs collected in batch mode. During batch
processing, the user will continue to refine
processing parameters as the results are
evaluated, perhaps even revising initial
experimental geometry estimates. Thus the three
stages are somewhat fluid as feedback from later
stages may call for repeating earlier stages.

Processing at scale using MySQL

Aggregating feedback from SX experiments has
often been done by searching through log files or
result files and creating plots and tables. As
experiments get large, with thousands to millions
of images being processed across many datasets,
the scale of the data complicates this kind of data
scraping. To solve this problem, we used a
database system implemented in MySQL to store

Computational Crystallography Newsletter (2019). 10, 22-39

and retrieve information about every frame
processed. The system allows us to use structured
queries to quickly sort, aggregate and visualize
crystal indexing results and integration quality.

At LCLS, the facility staff has provided a MySQL
server for general users. Access is trivial to obtain
by emailing the staff. For other facilities we have
provided a program, cctbx.xfel.ui_server that wraps
MySQL and initializes the database from scratch.
Users at any facility can run this program, as
described below, either locally or on a computer
cluster. The cctbx.xfel GUI will connect to this
server and use it to track jobs, processing
parameters and sample quality for rapid feedback.
Because MySQL is designed as an enterprise
solution for managing large amounts of data, as
experiments expand in scope, the backend for
managing the large amounts of metadata will scale
as well.

Data processing tutorials

The two tutorials presented here describe how to
process datasets from SACLA and LCLS. We first
explain how to install and configure the cctbx.xfel
software and how to acquire the tutorial data,
then, after initial calibration, we demonstrate how
to use the GUI itself to submit and monitor jobs,
and visualize the processing results. Merging is
described, but this section is under active
development and is likely to change after this
article is published.

Installation

The cctbx.xfel GUI comes with DIALS and Phenix
installations and will run natively after installing
MySQL. What follows are directions for a
standalone (non-LCLS) installation. After that are
directions for an LCLS installation that includes
psana, the package needed to read the LCLS file
format (XTC) natively. Both procedures assume
the user is on a single node system, without access
to the original facility’s computers, though
queuing support using multiple nodes for large
batch processing is also described. These
directions are verified to work on Linux Centos 7.

Let SWORKING be a new, empty directory. Note,
here $WORKING always refers to the full path to
that directory. Also let $NPROC be the number of
processors available on your system, for example,
32.

23

ARTICLES I

Standalone builds
Download the installation script:

wget https://raw.githubusercontent.com/cctbx/cctbx_project/master/xfel/util /standalone_xfelgui_installer.sh
Run the script, providing the destination folder:

chmod +x standalone_xfelgui_installer.sh

./standalone_xfelgui_installer.sh $WORKING

The script will download the latest version of DIALS, install it in the $WORKING folder, install MySQL,
and create a setup.sh script that you can use to put DIALS in your path:

source $WORKING/setup.sh
LCLS builds

The cctbx.xfel GUI is available for all users at LCLS at /reg/g/cctbx. However, for the purposes of this
tutorial, we assume no access to the LCLS computing systems. To use the psana libraries, we need to
build the software manually; we cannot use a pre-built DIALS bundle. The installation script does this.

Download the script:

wget https://raw.githubusercontent.com/cctbx/cctbx_project/master/xfel/util/Icls_xfelgui_installer.sh
Run the script, providing the destination folder and the number of processors:

chmod +x lcls_xfelgui_installer.sh

./1cls_xfelgui_installer.sh SWORKING $NPROC

The script will download the latest version of DIALS, psana, MySQL, and other dependencies, build the
software, and create a setup.sh script that you can use to put DIALS in your path:

source $WORKING/setup.sh

For more information on developer builds of DIALS, see
https://dials.github.io /documentation/installation_developer.html

Download and prepare tutorial data

The cctbx.xfel GUI requires a run to have finished being collected before processing begins. Therefore it
has multiple modes for monitoring for new data, depending on the facility. LCLS has a webservice that
can be used to query if data is available. SACLA uses Cheetah to prepare HDF?5 files from the raw data,
and indicates it is finished using a status file (Barty et al, 2014, Nakane et al, 2016b). Standalone
facilities such as synchrotrons often collect a constant number of files in a single raster. If all else fails,
time stamps and file sizes can be monitored.

We download the data from cxi.db (Maia, 2012):

SACLA tutorial data
* cd $WORKING; mkdir -p data/run1; cd data/runl
e Getarun from HAD13a from here: https: //www.cxidb.org/data/43/HAD13a/. Here we use the
first run which had the fewest hits and is the smallest file size: wget
http://portal.nersc.gov/archive/home/projects/cxidb/www/43/HAD13a/run371999-0.h5
¢ Create a Cheetah status.txt file so the run will be seen by the GUI:
echo Status=Finished > status.txt

LCLS tutorial data
These directions assume the user is not working on the LCLS interactive nodes.
e cd $WORKING; mkdir Icls; cd Icls

Computational Crystallography Newsletter (2019). 10, 22-39 24

ARTICLES I

* LCLS uses a .dat file that maps experiment names to experiment number. Create a .dat file with
only the thermolysin experiment in it:
o mkdir ExpNameDb
o echo "280 CXI cxi78513" > ExpNameDb/experiment-db.dat
* Download a run from cxi.db, entry 81 (see https: //www.cxidb.org/id-81.html):
o mkdir -p CXI/cxi78513/xtc; cd CXI/cxi78513 /xtc
o wget
http://portal.nersc.gov/archive/home/projects/cxidb/www/81/cxi78513 /xtc/e280-
r0013-s00-c00.xtc
o Note, thisis 81.8 GB! And it's only 1/5t of run 13!
* Build the small data file needed to read the xtc file:
o mkdir smalldata
o smldata -fe280-r0013-s00-c00.xtc -o smalldata/e280-r0013-s00-c00.smd.xtc
* Download the calibration folder. This includes the CSPAD geometry file refined in Brewster
2018 (see also https://github.com/phyy-nx/dials refinement brewster2018) and the CSPAD

dark pedestal files.
o cd $WORKING/Icls/CXI/cxi78513
o wget

http://portal.nersc.gov/archive/home/projects/cxidb/www/81/cxi78513/calib.tar.gz
o tar -xvf calib.tar.gz; rm calib.tar.gz
* Export variables instructing psana where the data are (note you can add these lines to your
setup.sh script from the installation section after the source commands).

export SIT DATA=$WORKING/lcls
export SIT_ROOT=$SIT DATA
export SIT_PSDM DATA=$SIT_DATA

If the user is running at LCLS on their own data, all of these steps can be skipped as psana has defaults
that can find the data in /reg/d/psdm, the data’s default location.

Start MySQL

The MySQL server is wrapped by the program cctbx.xfel.ui_server. This program takes as an argument
the directory in which the database will be initialized, which directory must be empty the first time the
program is ran. The first time the program is ran, a root password will be requested which will be used
for the root database account that the program will create and set up. This should not be your system
root password. Subsequently, the program can be run on a cluster or locally, as needed.

¢ cd $WORKING
* cctbx.xfel.ui_server db.port=3307 db.server.basedir=fWORKING/MySQL db.user=guidemo2019
db.name=guidemo2019
o Note, the db.user and db.name fields create a MySQL user and a MySQL database within
the MySQL/data folder. A password can also be provided but it would be stored as
unencrypted text in the GUI settings file so this is not recommended. Here we leave the
password blank.
* Provide a root password and wait until "Raising max connections" appears
* Background the process (CTRL-Z, then type bg)
* Note, when done processing, shut the server down using fg followed by CTRL-C

This step can be skipped when running at LCLS itself, provided that facility staff has granted access to
psdb-user.slac.stanford.edu.

Initial calibration and masking
In the case of HAD13a, the initial geometry is sufficient for indexing. If it were not, the initial detector
position could be determined using a powder pattern from a known sample, such as silver behenate

Computational Crystallography Newsletter (2019). 10, 22-39 25

ARTICLES I

(AgBeh). To do this, using the averaging commands below on the AgBeh dataset, run dials.image_viewer
and use the Actions: show unit cell tool to determine the new beam center and detector distance by
fitting the overlaid rings.

Given a good initial geometry, follow these steps to create an untrusted pixel mask using an average
image. This is optional because for the HAD13a dataset, the beamstop is a simple circle in the middle of
the image and it can be masked out using a low-resolution filter during processing. However, you can
use dials.image_viewer tool to create a custom mask if needed.

e cd $WORKING

* mkdir averages; cd averages

» dxtbx.image_average ../data/run1/run371999-0.h5 -v -n $NPROC

e dials.image_viewer *.cbf

* Page to avg.cbfifit's not already displayed

* Actions: show mask tool

* The goal is to make a low resolution mask around the beamstop. If this were a single panel
image, the circle tool would work, but because it is multipanel, each inner tile needs its own
mask. Use the polygon tool four times. When done, click save mask. A pixels.mask file will be
created.

* Test the mask: dials.image_viewer *.cbf mask=pixels.mask. Click the show mask button in the
settings dialog. The masked pixels will turn red.

For the LCLS thermolysin data, the detector has already been calibrated (see Brewster et al. (2018)).
Follow the instructions at https://github.com/phyy-
nx/dials_refinement brewster2018/wiki/Averages-and-masking to generate an untrusted pixel mask.

Run and configure the cctbx.xfel GUI
To start the cctbx.xfel GUI, on the command line, run:

e cd $WORKING
e cctbx.xfel

At this point several settings dialogs will be used to configure the processing environment. In these
examples, local processing is used (single node), but alternatives are discussed below including multi-
node clusters.

Standalone GUI (HAD13a example)

Use the following settings for the HAD13a dataset:
* Login window:

o Experiment Tag: common. The experiment tag is a way to group processing results
together. We tend to use ‘common’ to indicate a set of processing results that are
available for all contributors to an experiment, but any string of characters can be used.

o Facility: Standalone

o Output: SWORKING /results

* DB Credentials window:

o DB Hostname: 127.0.0.1

o DB Portnumber: 3307

o DB name: guidemo2019

o DB user name: guidemo2019

* Facility options window:
o Folder to monitor: $WORKING/data
o Monitor for: folders

Computational Crystallography Newsletter (2019). 10, 22-39 26

ARTICLES I

o File matching template: run*.h5
o Check the ‘Files are composite’ box
* Advanced settings:
o Multiprocessing: local
o Total number of processors: $NPROC
o Processing back end: cctbx.xfel (standalone mode). Note there are other options here,
including the possibility of running other programs. Contact the authors if interested.
* Note, the DB host name will vary depending on what system the MySQL database is running on.
For this tutorial, running on a local node, we use the IP address of ‘localhost’.
* Tip: the GUI saves your settings to ~/.cctbx.xfel/settings.phil, which will be automatically used
the next time you run the GUL

Note, if running the GUI at SACLA during an experiment, set the multiprocessing system to PBS, then use
the blX-occupancy queue (where X is the beamline number) and specify the appropriate number of
cores per node (currently 28 cores) and the total number of cores desired. If that number is >28,
multiple nodes will be used per job.

Multiple users can run the GUI at the same time using the same experiment tag and database. They will
see the same set of processing results as the single MySQL backend is queried. However, it is advised to
only monitor for new runs and submit jobs from a single GUI instance.

LCLS GUI (thermolysin example)
* Login window:
o Experiment Tag: common.
o Facility: LCLS
o Experiment: cxi78513
o Output: SWORKING /results
* DB Credentials window:
o DB Hostname: 127.0.0.1
o DB Portnumber: 3307
o DB name: guidemo2019
o DB user name: guidemo2019
* Facility options window:
o LCLS user name: <Leave blank or get from staff>
o LCLS password: <Leave blank or get from staff>
o These credentials are for the LCLS web service for monitoring for new runs. The service
does not use the same credentials as the facility’s Unix accounts. If the credentials are
not provided, the GUI instead looks for runs in the xtc folder for the experiment.
* Advanced settings:
o Multiprocessing: local
o Total number of processors: $NPROC
o Processing back end: cctbx.xfel (LCLS mode).

Note these instructions are for running outside of LCLS. If using the LCLS provided MySQL server,
specify the DB host name as psdb-user.slac.stanford.edu, leave the port blank (it will default to 3306),
and specify the DB name and DB user name provided to you by the facility staff. Additionally, for
multiprocessing select LSF and then select either the psanaq (offline processing) or a high priority
queue if processing during an experiment.

GUI tab: Runs

The GUI is organized into a series of tabs. The first tab, runs, shows the runs discovered by the GUI. Click
the ‘Watch for new runs’ button and after a moment the available runs will appear. A run represents a

Computational Crystallography Newsletter (2019). 10, 22-39 27

ARTICLES I

continuous time of data collection where all the
parameters will the same. At a synchrotron, this
will often represent a single raster scan. The GUI
will continue to monitor for new data every few
seconds. You can disable the monitoring by
clicking the ‘Watch for new runs’ button again.

We found it difficult to keep track of which run
numbers correspond to which sample and the
sample conditions. We typically log metadata in a
spreadsheet during the beamtime, but we wanted
to be able to sort runs by this metadata within the
GUi. To this end, runs can be tagged with
descriptive terms, such as ‘thermolysin’, ‘batch 5’,
‘timepoint 3’, and so forth. Click ‘Manage tags’ to
create, rename, and remove tags. Click a run to tag
it, or click ‘Change tags on multiple runs’ to work
with many tags at once. During data collection, use
the ‘Manage persistent tags’ feature to
automatically tag new runs with a tag set as they
arrive. Use these tags to group runs together using
words appropriate to your experiment. You can
use these tags in the subsequent plots to quickly
switch between which data is being examined.

GUI tab: Trials

The list of parameters available to the core
processing program dials.stills_process is
extensive, but most of the time only a few defaults

Had13 Trial 0

* Go to trials tab and click new trial. Settings:

need to be changed. We have found that during an
experiment the same data needs to be re-
processed several times as it calibrated and
explored, changing geometry, spotfinding and
indexing parameters. We group processing
attempts that change parameters that generally
refer to the crystal together into trials. For
example, trial 0 may be our initial indexing trial
based on the published unit cell, but after
examining the results, we see the unit cell is
slightly different, so we resubmit the jobs into a
new trial 1 with a better unit cell estimate. The
output folders are organized by runs and trials to
keep the data organized.

Further, we have often found that sequential
groups of runs tend to have the same set of
detector-specific parameters, such as geometry.
Therefore we create run groups (or run blocks)
that identify sets of runs that should be similarly
behaved. Thus, a trial has sample and crystal-
specific parameters, and a trial comprises a set of
run groups. Note that while tags and run groups
both organize runs into logical groupings, they are
used differently. Tags use user-defined metadata
specific to the sample and experiment while run
groups organize runs into sets with similar
processing parameters. Use the Trials tab to
manage these features:

o Comment: as you like, for example '"HAD13a, initial indexing'
o Change resolution in bottom right to 1.7. This resolution is only used in aggregating the results,

not in indexing or integrating the data.

o Inthe central window, use these parameters:

spotfinder {

filter {

d_max = 19

min spot size = 2

}

}
indexing {
known_symmetry {
space_group = C2221
unit cell = 46.2, 103.0,
}

}

prediction.d_max=19

128.7,

90,

90, 90

o Note prediction.d_max and spotfinder.filter.d_max can be removed if you created a static low

resolution mask above.

Computational Crystallography Newsletter (2019). 10, 22-39

28

ARTICLES I

o Choosing good spotfinding parameters is critical. In this case the gain is close to 1 so
spotfinder.threshold.dispersion.gain is not modified (unlike for the CSPAD, see below). The
DIALS tutorials online have further guidance for choosing these parameters using
dials.image_viewer (see https://dials.github.io /documentation/tutorials).

o If the unit cell and symmetry are unknown, the indexing parameters can be omitted in which
case the P1 will be used. Clustering tools such as those in Zeldin et al. (2015) and Gildea and
Winter (2018) can be used to determine the unit cell and symmetry.

e Click ok.

¢ Click new block. If you made a mask, put the path to it in the "Untrusted pixel mask" box (should be

$WORKING/averages/pixels.mask). Click ok.
* Check the Active Trial box

Additional run groups can be created as needed, and can be added or removed from a trial using the
‘Select blocks’ button. Note, by default, a set of processing results will be created for each image. To save
on file system usage, these can be combined using output.composite_output=True in the trial

parameters.

Thermolysin Trial 0

For the CSPAD thermolysin data, use the above procedure with these trial parameters:

spotfinder {
filter.min_ spot_size=2
threshold.dispersion.gain=25

threshold.dispersion.global threshold=100

}

indexing {

known_symmetry {

space_group = P6122

unit_cell = 92.9 92.9 130.4 90 90 120

}

refinement protocol.d min_start=1.7

}

Here, a global threshold of 100 is used to remove
noisy pixels. Note, the LCLS version by default
writes CBF versions of each indexed image to
assist debugging the raw XTC streams. To save on
file system usage, this can be disabled with
dispatch.dump_indexed=False. Also, for LCLS
processing, composite_output=True is the default.

For the run group, use CxiDs1.0:Cspad.0 for the
detector address, 580.119 for DetZ, and provide
the path to the untrusted pixel mask if you created
one.

GUI tab: Jobs

The jobs tab displays processing job information.
A job consists of the output from a single
processing attempt, and is associated with a trial
number, a run group number, and a run. Click the
‘Auto-submit jobs® button. For local processing
mode, each job not yet processed is ran in
sequence. For LSF, PBS, or other queuing systems,

Computational Crystallography Newsletter (2019). 10, 22-39

all jobs not yet processed are submitted to the
queue. As new data arrives, they are automatically
submitted. Under the hood, the program
cxi.mpi_submit is used to submit the jobs (see
Brewster et al. (2016)).

Processing results are logged to the MySQL
database, and are created as DIALS reflection
tables and experiment files in the output folder
$WORKING/results, as configured above. The full
set of commands and processing parameters used
for the job are copied to this folder, in job-specific
subfolders, for archival purposes.

Jobs can be terminated, deleted, and restarted
using the jobs tab. Deleting a job deletes all the
results from the MySQL database and from the file
system in the results folder.

GUI tab: Run Stats
The Run Stats tab displays a variety of hit rate

29

ARTICLES

[} [} [X| CCTBX.XFEL | cxi78513 | L785
Help
K2)
© (S & A eV
Quit Watch for new runs Auto-submit jobs ' Calibration Settings Large text

Runs | Trials | Jobs | Spotfinder Run Stats | Unit Cell | Merge |

Run Statistics - Trial 17
u é thermolysin, Groupl [DONE] thermolysin, Groupl [DONE]
© x % 1000
32 c
283 s00
£S5
)
5y 01 I 100
x 2 o
it g
R 501 50 §%
58 5%
5% &
£ o F o0
s 2T I o
L vV
=2 F50 £o
2e 34 ¥
<3 Eni
run 13 run 14 °
41382 img/10312 hit 61741 img/10915 hit
D 8971 (6317) idx 8887 (6622) idx
44.0% solv/24.9% xtal 35.4% solv/17.7% xtal
21.7 (15.3)% idx 14.4 (10.7)% idx
0 200 400 600 800
timestamp (s)
images shown as all (2.5 Angstroms)
Statistics Options Strongest Indexed Images
Tl 17 - . reg/d/psdm/cxi/cxi78513/scratch/brewster/paper_2017/ ﬂ
Iel2EReG] TS results/r0013/017_rg013/out/
Auto plot last five runs | 011 = idx-20130301060250689.cbf
reg/d/psdm/cxi/cxi78513/scratch/brewster/paper_2017/ Il
Auto plot entire experimell 012 mom e EANIRINA T ma0 D ek
13 Open images |
high resolution limit: ,ﬁ 14
ol ,2— Strong Images that Didn't Index
gl 0 15 reg/d/psdm/cxi/cxi78513/scratch/brewster/paper_2017/ ﬂ
two theta ratio 1.5 |0 16 results/r0013/017_rg013/all/
shot-20130301060251056.cbf
I/sig(l) cutoff: ll_ 017 reg/d/psdm/cxi/cxi78513/scratch/brewster/paper 2017/
O1s R R A) - =
strong spots IE . 5 Dump images |
images to dump: ’ﬁ
@ Run Sentinel @ Job Sentinel @ Job Monitor @ Spotfinder @ Run Stats @ Unit Cell
., 100
s - 8 T B 40
—
% . .o: * Vo 50 7 c
500 A S SE L50 ©
)] . o (O] > - 20
c ., o8, T © = 3
o= . c— @]
5% o =N a
“w e < <
0 x SN O = IS
=0 0 7 RRR-N 0 0 S 0
©
£
Time (s) 210 220 210 220 210 220

Figure 1: Run Stats tab showing two thermolysin runs. Note, the tutorial uses only 1/5t of run 13, whereas here we show all of
run 13 plus run 14. Top: XFEL GUI. Bottom row: zooms of three sections of the main plot.

information. Select a trial and a run, and the plot
will be generated. See figure 1 for a thermolysin
example.

Every part of the hit rate plot is a direct result of
issues encountered during SX experiments. We
need to know a variety of information at a glance,
such as whether we are hitting the sample with
the beam, are there crystals, are there multiple
lattices, can we index them (if not, why), and what

Computational Crystallography Newsletter (2019). 10, 22-39

information. Select a trial and a run, and the plot
will be generated. See figure 1 for a thermolysin
example.

Every part of the hit rate plot is a direct result of
issues encountered during SX experiments. We
need to know a variety of information at a glance,
such as whether we are hitting the sample with
the beam, are there crystals, are there multiple
lattices, can we index them (if not, why), and what

30

ARTICLES I

is their quality. Further, we need the information
updated live as the experiment progressed, but we
also need to be able to quickly compare runs to
each other, even if they were collected days
earlier. To this end, the database is queried and hit
rates displayed as you select specific runs, auto-
plot the last five runs, or plot the entire
experiment (all runs at once).

The top panel is split into four horizontal plots,
labeled in figure 1 as A-D. In the hit rate plot (A),
every image has one dot. The height of the dot is
how many reflections were found during
spotfinding on the image. The dot is blue if it
indexed and gray if it did not.

In the indexing plot (B), moving averages are
computed for the solvent hit rate (green, right-
hand Y-axis), the indexing rate (blue, left-hand Y-
Axis) and the multiple lattice rate (magenta, left-
hand Y-Axis). These rates are the percentage of
the total number of shots in the moving window
that contained solvent, indexed successfully, or
had multiple lattices present, respectively.

The solvent rate is computed by examining ratio
of the water ring intensity to the background. This
is done by specifying two 26 values in the run
group, a high value and a low value. The defaults
are 22.8° for the water ring and 12.5° for the
background ring (note these are wavelength
dependent following Bragg’'s law). Radial average
values are computed at these two positions and if
their ratio is higher than the default of 1.0, then
the shot is considered having solvent.!

The diffraction quality plot (C) shows one dot per
image in yellow, where the height of the dot (left
Y-axis) is the resolution the image diffracted to,
using a mean I /o ratio cutoff of 1.0 by default. The
yellow line is a moving average of the percentage
of indexed images that diffract to at least 2.5A
(right Y-axis). This is the high-quality rate. Note
that the resolution estimates are usually
optimistic. After scaling and post-refinement,
many reflections have reduced intensity due to
partiality correction, since most reflections are
partial. Therefore the user may wish to adjust the
[/o ratio cutoff to something more stringent to get
a more realistic resolution estimate.

The statistics bar (D) shows per run statistics. In
the case of thermolysin run 13, 10312 shots out of
41382 images were considered hits, where a hit
has at least 40 reflections. 8971 images indexed,
6317 of which were high quality. 44.0% of shots
had solvent, and 24.9% of shots had crystals (this
is the hitrate). 21.7% of shots indexed, and 15.3%
of shots indexed to 2.5A. The high quality rate (not
shown) would be (6317/8971) = 70.4% for this
run.

Most of the parameters listed above, such as [/o
ratio cutoff, are configurable in the lower-left hand
corner of the Run Stats tab. The two image display
options, ‘Strongest indexed images’ and ‘Strongest
images that didn’t index’ open the DIALS image
viewer and allow users to look at their best data
and their most problematic data, respectively.
(Note this feature is only available for the LCLS
facility, but is in development for extant facilities).

Some tips on usage. A flat line in the hitrates bar
(A) indicates none of the shots contain Bragg
diffraction. This could mean there is no data but it
could also mean the spot finding thresholds are
too stringent. A mix of blue and gray dots indicates
many images are not indexing. The unit cell
parameters or geometry might not be well
optimized. Many gray dots consistently higher
than the blue dots could indicate multiple lattices,
as indexing tends to fall off if too many crystals are
hit in a shot.

Combining A and B, if the solvent rate is zero and
the hitrate is zero, then there is no solvent in the
beam, indicating the jet is missing or the raster is
missing, etc. If the solvent rate is high but the
number of spots is low, the crystals concentration
is too low. If the solvent rate and number of spots
are both high but the indexing rate is low, the
indexing parameters or experimental geometry is
wrong, or the spotfinding parameters are picking
up noisy reflections.

The spotfinder should find few reflections on
images considered misses, but poor spotfinding
parameters can result in noisy mis-identified
reflections, especially near a beam stop or other
shadowing. If the background number of spots per
image is too high (around 20-40), consider first

1The background ring default 26 is configured for kapton tape scatter as typicall